Studi Numerik Gelombang Tsunami di Wilayah Pesisir Menggunakan Metode Elemen Hingga
Keywords:
Tsunami, Finite element method, Disaster mitigation, Numerical simulation, Coastal areasAbstract
Tsunami waves have a wide impact on coastal areas and cause damage to ecosystems and infrastructure. This study models tsunami wave propagation using the finite element method to understand the pattern and impact of waves on certain topography. This study uses topographic data and water conditions to simulate waves with various scenarios. The results of this study are expected to assist in disaster mitigation planning and early warning in coastal areas.
References
Baptista, A. M., Myers, E. P., & Flick, R. E. (1993). The finite element method in tsunami simulations. Journal of Coastal Research, 9(2), 611-624. https://doi.org/10.2307/4298512
Boussinesq, J. V. (1872). Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal. Journal de Mathématiques Pures et Appliquées, 17, 55-108.
Goto, C., Sugawara, D., & Imamura, F. (2007). Numerical modeling of tsunami inundation in coastal areas. Pure and Applied Geophysics, 164(2-3), 451-463. https://doi.org/10.1007/s00024-007-0217-2
Goto, K., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. Tohoku University Press.
Imamura, F. (1996). Review of tsunami simulation with a finite difference method. In Long-wave runup models (pp. 25-42).
Jha, B., & Das, S. (2013). Simulation of tsunami propagation and inundation using finite element method. Ocean Engineering, 57, 45-54. https://doi.org/10.1016/j.oceaneng.2012.12.023
Kanoglu, U., & Synolakis, C. E. (1998). Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics, 374, 1-28. https://doi.org/10.1017/S0022112098001592
Kowalik, Z., & Murty, T. S. (1993). Numerical modeling of ocean dynamics. World Scientific.
LeVeque, R. J., & George, D. L. (2008). High-resolution finite volume methods for the shallow water equations with bathymetry and dry states. Advances in Water Resources, 32(5), 692-698. https://doi.org/10.1016/j.advwatres.2008.01.003
Liu, P. L.-F., Cho, Y.-S., & Yoon, S. B. (1994). Numerical simulations of the 1983 Kao-Hsiung tsunami using a finite-element model. Journal of Waterway, Port, Coastal, and Ocean Engineering, 120(6), 613-630. https://doi.org/10.1061/(ASCE)0733-950X(1994)120:6(613)
Lynett, P., & Liu, P. L.-F. (2002). Finite-volume model for wave propagation and runup. Coastal Engineering, 46(2), 89-107. https://doi.org/10.1016/S0378-3839(02)00004-7
Tang, L., Titov, V. V., & Chamberlin, C. D. (2009). Development, testing, and applications of a near-field tsunami forecast model. Journal of Geophysical Research: Oceans, 114(C12). https://doi.org/10.1029/2008JC005198
Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157-171. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(157)
Wang, X., & Liu, Y. (2007). A numerical investigation of tsunami generation and propagation using a 3D finite element model. Ocean Modelling, 18(3-4), 223-238. https://doi.org/10.1016/j.ocemod.2007.01.005
Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method, volume 1: The basis. Butterworth-Heinemann.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Prosiding Seminar Nasional Ilmu Matematika dan Sains

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.