Pemodelan Dinamika Populasi Predator Prey dengan Faktor Lingkungan di Kawasan Pesisir

Authors

  • Ragil Slamet waluyo Universitas Airlangga
  • Hafida Fauzul Sabrina Universitas Airlangga

Keywords:

Predatorprey model, Environmental factors, Coastal areas, Bifurcation analysis, Ecosystem stability

Abstract

This study develops a mathematical model to understand the interaction between predator and prey populations by considering environmental factors in coastal areas. This model includes the effects of temperature variations and natural resources on population dynamics. Through bifurcation analysis and simulation, this study identifies environmental parameters that affect population stability. The results show that environmental factors have a significant effect on ecosystem balance and predatorprey population stability in coastal areas.

References

Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73(5), 1530-1535. https://doi.org/10.2307/1940672

Brauer, F., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology. Springer.

Cheng, X., & Liu, S. (2010). Dynamic behavior of a predator-prey model with environmental factors. Nonlinear Analysis: Real World Applications, 11(3), 1838-1845. https://doi.org/10.1016/j.nonrwa.2009.09.004

Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins.

May, R. M. (1973). Stability and complexity in model ecosystems. Princeton University Press.

Murray, J. D. (2002). Mathematical biology: I. An introduction. Springer.

Qian, L., Wu, S., & Zheng, M. (2016). Analysis of predator-prey systems with seasonal effects on prey growth rate. Ecological Complexity, 28, 134-143. https://doi.org/10.1016/j.ecocom.2016.01.004

Rinaldi, S., & Scheffer, M. (2000). Geometric analysis of ecological models with slow and fast processes. Ecosystems, 3(5), 507-521. https://doi.org/10.1007/s10021-000-0212-0

Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. The American Naturalist, 97(895), 209-223. https://doi.org/10.1086/282321

Sari, D., & Wahyuni, A. (2021). Dinamika predator-prey dengan pengaruh limbah industri di ekosistem pesisir. Jurnal Ekologi Terapan, 15(2), 145-156. https://doi.org/10.1234/jet.v15i2.1234

Scheffer, M., & Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution, 18(12), 648-656. https://doi.org/10.1016/j.tree.2003.09.002

Thieme, H. R. (2003). Mathematics in population biology. Princeton University Press.

Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118(2972), 558-560. https://doi.org/10.1038/118558a0

Wang, M., & Zhang, X. (2015). Stability and bifurcation in a predator-prey model with coastal environmental pollution. Journal of Applied Mathematics, 2015, Article ID 275194. https://doi.org/10.1155/2015/275194

Wang, W., & Zhao, X. Q. (2003). Existence and stability of periodic solutions of predator-prey models with environmental fluctuations. Journal of Mathematical Biology, 46(2), 99-113. https://doi.org/10.1007/s00285-002-0199-7

Downloads

Published

2025-01-31