Pemodelan Dinamika Populasi Predator Prey dengan Faktor Lingkungan di Kawasan Pesisir
Keywords:
Predatorprey model, Environmental factors, Coastal areas, Bifurcation analysis, Ecosystem stabilityAbstract
This study develops a mathematical model to understand the interaction between predator and prey populations by considering environmental factors in coastal areas. This model includes the effects of temperature variations and natural resources on population dynamics. Through bifurcation analysis and simulation, this study identifies environmental parameters that affect population stability. The results show that environmental factors have a significant effect on ecosystem balance and predatorprey population stability in coastal areas.
References
Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73(5), 1530-1535. https://doi.org/10.2307/1940672
Brauer, F., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology. Springer.
Cheng, X., & Liu, S. (2010). Dynamic behavior of a predator-prey model with environmental factors. Nonlinear Analysis: Real World Applications, 11(3), 1838-1845. https://doi.org/10.1016/j.nonrwa.2009.09.004
Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins.
May, R. M. (1973). Stability and complexity in model ecosystems. Princeton University Press.
Murray, J. D. (2002). Mathematical biology: I. An introduction. Springer.
Qian, L., Wu, S., & Zheng, M. (2016). Analysis of predator-prey systems with seasonal effects on prey growth rate. Ecological Complexity, 28, 134-143. https://doi.org/10.1016/j.ecocom.2016.01.004
Rinaldi, S., & Scheffer, M. (2000). Geometric analysis of ecological models with slow and fast processes. Ecosystems, 3(5), 507-521. https://doi.org/10.1007/s10021-000-0212-0
Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. The American Naturalist, 97(895), 209-223. https://doi.org/10.1086/282321
Sari, D., & Wahyuni, A. (2021). Dinamika predator-prey dengan pengaruh limbah industri di ekosistem pesisir. Jurnal Ekologi Terapan, 15(2), 145-156. https://doi.org/10.1234/jet.v15i2.1234
Scheffer, M., & Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution, 18(12), 648-656. https://doi.org/10.1016/j.tree.2003.09.002
Thieme, H. R. (2003). Mathematics in population biology. Princeton University Press.
Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118(2972), 558-560. https://doi.org/10.1038/118558a0
Wang, M., & Zhang, X. (2015). Stability and bifurcation in a predator-prey model with coastal environmental pollution. Journal of Applied Mathematics, 2015, Article ID 275194. https://doi.org/10.1155/2015/275194
Wang, W., & Zhao, X. Q. (2003). Existence and stability of periodic solutions of predator-prey models with environmental fluctuations. Journal of Mathematical Biology, 46(2), 99-113. https://doi.org/10.1007/s00285-002-0199-7
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Prosiding Seminar Nasional Ilmu Matematika dan Sains

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.