Penggunaan Algoritma Genetika Untuk Optimasi Pengolahan Limbah di Industri Tekstil

Authors

  • Sahal Fahmi Universitas Hasanuddin
  • Adrianus Reven Salude Universitas Hasanuddin
  • Fransiskus Rizki Mawandi Samosir Universitas Hasanuddin

Keywords:

Genetic algorithm, Optimization, Wastewater treatment, Textile industry, Environmental impact

Abstract

Textile wastewater treatment is a major challenge for the industry due to the complexity of the chemical components produced. Genetic algorithms are used in this study to optimize the wastewater treatment process by selecting the best parameters in chemical reactions. This optimization model focuses on minimizing costs and environmental impacts using a population evolution approach. Simulation results show that genetic algorithms can significantly improve wastewater treatment efficiency, reduce pollution, and reduce operational costs.

References

Abd El-Moumen, A., & El-Gohary, F. A. (2019). Genetic algorithm based optimization of textile wastewater treatment process. Environmental Progress & Sustainable Energy, 38(1), 45-52. https://doi.org/10.1002/ep.13050

Bagheri, M., Mirbagheri, S. A., & Khorasani, N. (2013). Optimization of decolorization process of textile wastewater using genetic algorithm. Journal of Environmental Health Science and Engineering, 11(1), 15-26. https://doi.org/10.1186/2052-336X-11-15

Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. B. (2007). Evolutionary algorithms for solving multi-objective problems. Springer.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley.

Deep, K., & Mebrahtu, H. (2012). Optimization of textile wastewater treatment using genetic algorithm. Journal of Cleaner Production, 23, 74-81. https://doi.org/10.1016/j.jclepro.2011.10.004

Farahani, M., & Shokri, R. (2020). Application of genetic algorithms in wastewater treatment process optimization for textile industry. Journal of Environmental Engineering and Management, 18(2), 112-122.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.

Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press.

Kulkarni, A. J., & Shinde, G. (2014). A hybrid genetic algorithm approach for optimization in industrial wastewater treatment. Environmental Modeling & Assessment, 19(4), 329-340. https://doi.org/10.1007/s10666-013-9385-3

Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., & Olsson, G. (2012). Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination, 305, 1-11. https://doi.org/10.1016/j.desal.2012.06.028

Nandy, T., & Kaul, S. N. (2001). Optimization of coagulation-flocculation process for pretreatment of high strength wastewater using genetic algorithm. Journal of Environmental Engineering, 127(10), 857-863. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:10(857)

Noori, R., & Karbassi, A. (2010). Evaluation of the efficiency of genetic algorithms in optimization of wastewater treatment systems. Desalination and Water Treatment, 22(1-3), 104-109. https://doi.org/10.5004/dwt.2010.1414

Ong, K. L., Nge, T. T., & Fong, K. S. (2015). Optimizing textile wastewater treatment using genetic algorithm for a sustainable industry. Industrial Water Treatment Journal, 7(2), 142-150.

Rao, R. S., & Saroj, D. P. (2008). Artificial intelligence techniques for water and wastewater treatment. Desalination and Water Treatment, 7(1-3), 49-60. https://doi.org/10.5004/dwt.2008.548

Shahriari, M., & Ahmad, M. (2017). Multi-objective genetic algorithm for textile industry wastewater treatment optimization. Journal of Industrial and Engineering Chemistry, 58, 343-349. https://doi.org/10.1016/j.jiec.2017.03.012

Downloads

Published

2025-01-31