Penggunaan Algoritma Genetika Untuk Optimasi Pengolahan Limbah di Industri Tekstil
Keywords:
Genetic algorithm, Optimization, Wastewater treatment, Textile industry, Environmental impactAbstract
Textile wastewater treatment is a major challenge for the industry due to the complexity of the chemical components produced. Genetic algorithms are used in this study to optimize the wastewater treatment process by selecting the best parameters in chemical reactions. This optimization model focuses on minimizing costs and environmental impacts using a population evolution approach. Simulation results show that genetic algorithms can significantly improve wastewater treatment efficiency, reduce pollution, and reduce operational costs.
References
Abd El-Moumen, A., & El-Gohary, F. A. (2019). Genetic algorithm based optimization of textile wastewater treatment process. Environmental Progress & Sustainable Energy, 38(1), 45-52. https://doi.org/10.1002/ep.13050
Bagheri, M., Mirbagheri, S. A., & Khorasani, N. (2013). Optimization of decolorization process of textile wastewater using genetic algorithm. Journal of Environmental Health Science and Engineering, 11(1), 15-26. https://doi.org/10.1186/2052-336X-11-15
Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. B. (2007). Evolutionary algorithms for solving multi-objective problems. Springer.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley.
Deep, K., & Mebrahtu, H. (2012). Optimization of textile wastewater treatment using genetic algorithm. Journal of Cleaner Production, 23, 74-81. https://doi.org/10.1016/j.jclepro.2011.10.004
Farahani, M., & Shokri, R. (2020). Application of genetic algorithms in wastewater treatment process optimization for textile industry. Journal of Environmental Engineering and Management, 18(2), 112-122.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press.
Kulkarni, A. J., & Shinde, G. (2014). A hybrid genetic algorithm approach for optimization in industrial wastewater treatment. Environmental Modeling & Assessment, 19(4), 329-340. https://doi.org/10.1007/s10666-013-9385-3
Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., & Olsson, G. (2012). Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination, 305, 1-11. https://doi.org/10.1016/j.desal.2012.06.028
Nandy, T., & Kaul, S. N. (2001). Optimization of coagulation-flocculation process for pretreatment of high strength wastewater using genetic algorithm. Journal of Environmental Engineering, 127(10), 857-863. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:10(857)
Noori, R., & Karbassi, A. (2010). Evaluation of the efficiency of genetic algorithms in optimization of wastewater treatment systems. Desalination and Water Treatment, 22(1-3), 104-109. https://doi.org/10.5004/dwt.2010.1414
Ong, K. L., Nge, T. T., & Fong, K. S. (2015). Optimizing textile wastewater treatment using genetic algorithm for a sustainable industry. Industrial Water Treatment Journal, 7(2), 142-150.
Rao, R. S., & Saroj, D. P. (2008). Artificial intelligence techniques for water and wastewater treatment. Desalination and Water Treatment, 7(1-3), 49-60. https://doi.org/10.5004/dwt.2008.548
Shahriari, M., & Ahmad, M. (2017). Multi-objective genetic algorithm for textile industry wastewater treatment optimization. Journal of Industrial and Engineering Chemistry, 58, 343-349. https://doi.org/10.1016/j.jiec.2017.03.012
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Prosiding Seminar Nasional Ilmu Matematika dan Sains

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.